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We present the results of direct numerical simulations of heavy particle transport in
homogeneous, isotropic, fully developed turbulence, up to resolution 5123 (Rλ ≈ 185).
Following the trajectories of up to 120 million particles with Stokes numbers, St ,
in the range from 0.16 to 3.5 we are able to characterize in full detail the statistics
of particle acceleration. We show that: (i) the root-mean-squared acceleration arms

sharply falls off from the fluid tracer value at quite small Stokes numbers; (ii) at a
given St the normalized acceleration arms/(ε

3/ν)1/4 increases with Rλ consistently with
the trend observed for fluid tracers; (iii) the tails of the probability density function
of the normalized acceleration a/arms decrease with St . Two concurrent mechanisms
lead to the above results: preferential concentration of particles, very effective at small
St , and filtering induced by the particle response time, that takes over at larger St .

1. Introduction
Small impurities like dust, droplets or bubbles suspended in an incompressible

flow are finite-size particles whose density may differ from that of the suspending
fluid, and cannot thus be modelled as point-like tracers. The description of their
motion must account for inertia whence the name inertial particles. At long times
particles concentrate in singular sets evolving with the fluid motion, leading to the
appearance of a strong spatial inhomogeneity dubbed preferential concentration. At the
experimental level such inhomogeneities have long been known (see Eaton & Fessler
1994 for a review) and utilized for flow visualization (e.g. exploiting bubble clustering
inside vortex filaments). The statistical description of particle concentration is at
present a largely open question with many industrial and environmental applications,
such as spray combustion in diesel engines (Post & Abraham 2002) or some rocket
propellers (Villedieu & Hylkema 2000), the formation of rain droplets in warm clouds
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(Pinsky & Khain 1997; Falkovich, Fouxon & Stepanov 2002; Shaw 2003) or the
coexistence of plankton species (Rothschild & Osborn 1988; Lewis & Pedley 2000).
Inertial particles are also relevant to spore, pollen, dust or chemicals dispersion in
the atmosphere where the diffusion by air turbulence may even be overcome by
preferential clustering (Csanady 1980; Seinfeld 1986).

On the experimental side, the study of particle motion in turbulence has recently
undergone rapid progress thanks to the development of effective optical and acoustical
tracking techniques (La Porta et al. 2001, 2002; Mordant et al. 2001; Warhaft,
Gylfason & Ayyalasomayajula 2005). In parallel with the experimental effort,
theoretical analysis (Balkovsky, Falkovich & Fouxon 2001; Falkovich & Pumir 2004;
Bec, Gawedzki & Horvai 2004; Zaichik, Simonin & Alipchenkov 2003) and numerical
simulations (Boivin, Simonin & Squires 1998; Reade & Collins 2000; Zhou, Wexler &
Wang 2001; Chun et al. 2005) are paving the way to a thorough understanding of iner-
tial particle dynamics in turbulent flows. Recently, the presence of strong inhomogenei-
ties characterized by fractal and multifractal properties have been predicted, and found
in theoretical and numerical studies of stochastic laminar flows (Balkovsky et al. 2001;
Bec 2004; Bec 2005), in two-dimensional turbulent flows (Boffetta, De Lillo & Gamba
2004) and in three-dimensional turbulent flows at moderate Reynolds numbers in the
limit of vanishing inertia (Falkovich & Pumir 2004).

Here we present a direct numerical simulations (DNS) study of particles much
heavier than the carrier fluid in high-resolution turbulent flows. In particular, we shall
focus on the behaviour of particle acceleration at varying both Stokes and Reynolds
numbers. For fluid tracers, it is known that trapping into vortex filaments (La Porta et
al. 2001; Biferale et al. 2005) is the main source of strong acceleration events. On the
other hand, little is known about the acceleration statistics of heavy particles in turbu-
lent flows, where preferential concentration may play a crucial role. Moreover, since
in most applied cases it is almost impossible to perform DNS of particle transport
in realistic settings, it is important to understand acceleration statistics for building
stochastic models of particle motion with and without inertia (Sawford & Guest 1991).

2. Heavy particle dynamics and numerical simulations
The equations of motion of a small, rigid, spherical particle immersed in an

incompressible flow have been consistently derived from first principles by Maxey &
Riley (1983). In the limiting case of particles much heavier than the surrounding fluid,
these equations take the particularly simple form

dX
dt

= V (t),
dV
dt

= − V (t) − u(X(t), t)

τs

. (2.1)

Here, X(t) denotes the particle trajectory, V (t) its velocity, and u(x, t) is the fluid
velocity. The Stokes response time is τs = 2ρpa2/(9ρf ν) where a is the particle radius,
ρp and ρf are the particle and fluid density, respectively, and ν is the fluid kinematical
viscosity. The Stokes number is defined as St = τs/τη where τη =(ν/ε)1/2 is the
Kolmogorov timescale and ε the average rate of energy injection. Equation (2.1)
is valid for very dilute-suspensions, where particle–particle interactions (collisions)
and hydrodynamic coupling are not taken into account.

The fluid evolves according to the incompressible Navier–Stokes equations

∂u
∂t

+ u · ∇u = −∇p

ρf

+ ν�u + f , (2.2)

where p is the pressure field and f is the external energy source, 〈 f · u〉 = ε.
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Rλ urms ε ν η L TE τη Ttot Ttr �x N3 Nt Np Ntot

185 1.4 0.94 0.00205 0.010 π 2.2 0.047 14 4 0.012 5123 5 × 105 7.5 × 106 12 × 107

105 1.4 0.93 0.00520 0.020 π 2.2 0.073 20 4 0.024 2563 2.5 × 105 2 × 106 32 × 106

65 1.4 0.85 0.01 0.034 π 2.2 0.110 29 6 0.048 1283 3.1 × 104 2.5 × 105 4 × 106

Table 1. Parameters of DNS. Microscale Reynolds number Rλ, root-mean-square velocity
urms, energy dissipation ε, viscosity ν, Kolmogorov lengthscale η = (ν3/ε)1/4, integral scale L,
large-eddy Eulerian turnover time TE = L/urms, Kolmogorov timescale τη , total integration
time Ttot , duration of the transient regime Ttr , grid spacing �x, resolution N3, number of
trajectories of inertial particles for each St Nt saved at frequency τη/10, number of particles
Np per St stored at frequency 10τη , total number of advected particles Ntot . Errors on all
statistically fluctuating quantities are of the order of 10%.

The Navier–Stokes equations are solved on a cubic grid of size N 3 for N =
128, 256, 512 with periodic boundary conditions. Energy is injected by keeping
constant the spectral content of the two smallest-wavenumber shells (Chen et al.
1993). The viscosity is chosen so to have a Kolmogorov lengthscale η ≈ �x where
�x is the grid spacing: this choice ensures a good resolution of the small-scale
velocity dynamics. We use a fully dealiased pseudospectral algorithm with second-
order Adam–Bashforth time-stepping. The Reynolds numbers achieved are in the
range Rλ ∈ [65 : 185].

The equations of fluid motion are integrated until the system reaches a statistically
steady state. Then, particles are seeded with homogeneously distributed initial
positions and velocities equal to the local fluid velocity. Equations (2.1) and (2.2)
are then advanced in parallel. A transient in particle dynamics follows, for about 2−3
large-scale eddy turnover times, before reaching Lagrangian stationary statistics. It is
only after this relaxation stage has completely elapsed that the measurement starts.
We followed 15 sets of inertial particles with Stokes numbers from 0.16 to 3.5. For
each set, we saved the position and the velocity of Nt particles every dt = 1/10τη with
a maximum number of recorded trajectories of Nt = 5 × 105 for the highest resolution.
Along these trajectories we also stored the velocity of the carrier fluid. At a lower
frequency ∼ 10τη, we saved the positions and velocities of a larger number Np of
particles (up to 7.5 × 106 per St at the highest resolution) together with the Eulerian
velocity field. We have also followed fluid tracers (St = 0), that evolve according to
the dynamics

dx(t)

dt
= u(x(t), t), (2.3)

in order to systematically assess the importance of the phenomenon of preferential
concentration at varying both St and Rλ.

A summary of the various physical parameters is given in table 1.

3. Results and discussion
In this paper we focus on the statistics of particle acceleration a(t) = dV/dt .

From previous studies on fluid tracers we know that acceleration statistics are very
intermittent and strong fluctuations are associated with trapping events within vortex
filaments (La Porta et al. 2001, 2002; Mordant et al. 2001; Biferale et al. 2005).
How does inertia affect acceleration statistics? A good starting point to gain insight
into the effect of inertia is given by the formal solution of (2.1) in the statistically
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Figure 1. (a) The normalized acceleration variance arms/(ε
3/ν)1/4 as a function of the Stokes

number for Rλ = 185 (�); 105 (�); 65 (�). The inhomogeneous distribution of particles is
quantified for the highest Rλ in the inset, where we plot the correlation dimension, D2, as a
function of St . The correlation dimension is defined as p(r) ∼ rD2 (for r � η) where p(r) is
the probability of finding two particles closer than r (Bec et al. 2005). (b) Comparison between
the acceleration variance, arms (�), as a function of St, with the acceleration of the fluid tracer
measured at the particle position, 〈(Du/Dt)2〉1/2 (+). The curve (�), approaching the arms

for large St , is the one obtained from the filtered tracer trajectories, aF
rms. All data refer to

Reλ = 185.

stationary state, relating the instantaneous particle velocity to the previous history of
fluid velocity along the particle trajectory. It is expressed as

V (t) =
1

τs

∫ t

−∞
e−(t−s)/τs u(X(s), s) ds (3.1)

yielding for the acceleration

a(t) =
1

τ 2
s

∫ t

−∞
e−(t−s)/τs [u(X(t), t) − u(X(s), s)] ds. (3.2)

It is instructive to analyse separately the two limiting cases of small and large Stokes
numbers.

At small St , i.e. τs � τη, the fluid velocity along the trajectory evolves smoothly in
time and expression (3.2) for the acceleration reduces to a(t) 	 (d/dt)u(X(t), t), i.e. to
the derivative of fluid velocity along the inertial particle trajectory. At sufficiently small
St this is indistinguishable from the fluid acceleration (Du/Dt)(X(t), t) evaluated
at the particle positions. The latter, in turn, is essentially dominated by the −∇p

contribution. Therefore we can draw the following picture for the small-St case: the
heavy particle acceleration essentially coincides with the fluid acceleration; however,
inertial particles are not homogeneously distributed in the flow and concentrate
preferentially in regions with relatively small pressure gradient (low-vorticity regions).
As a result, the net effect of inertia is a drastic reduction of the root-mean-squared
acceleration arms = 〈a2〉1/2, due essentially to preferential concentration. Indeed, as
shown in figure 1(a) the acceleration variance has already droped off very fast at quite
small St values. In figure 1(b) we give evidence that the value of arms is very close to
〈(Du/Dt)2〉1/2 for St < 0.4 when the average is not taken homogeneously in space but
conditioned at be on the same spatial positions as the inertial particles. The agreement
of the two curves supports the arguments above. Notice that for increasing St the
two curves start to deviate from each other, the tracer acceleration conditioned on
the particle positions has a minimum for St ≈ 0.5 close to the maximum of clustering
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(see inset of figure 1a), eventually recovering the value of arms of the unconditioned
tracers for larger St . The latter effect is a clear indication that inertial particles follow
the small-scale structures of the flow more and more homogeneously on increasing
St . In this limit a different mechanism is responsible for the reduction of the arms.

At large St , i.e. τs 
 τη, inspection of (3.2) shows that the main effect of inertia
on particle acceleration is a low-pass filtering of fluid velocity differences, with
a suppression of fast frequencies above τ−1

s . In figure 1(b) we also compare the
acceleration variance with that obtained by an artificial low-pass filtering based only
on the fluid tracer trajectories. For each tracer trajectory, x(t), we define a new
velocity, uF , filtered on a window size of the same order as the Stokes time:

uF (t) =
1

τs

∫ t

−∞
e−(t−s)/τs u(x(s), s) ds. (3.3)

The filtered acceleration is thus given by aF =(d/dt)uF . Of course, in order to
extract the effect due to filtering only we need to employ fluid trajectories: (3.3)
applied along particle trajectories is the same as (3.1), so that the acceleration would
coincide with the particle acceleration by definition. The root mean square fluctuation,
aF

rms = 〈(d/dt)uF )2〉1/2, is thus computed by averaging along the tracer trajectories
without any condition on their spatial positions, i.e. homogeneously distributed in
the whole three-dimensional domain. The curves corresponding to arms and to aF

rms

become closer and closer together as St increases, supporting the conjecture that
preferential concentration for St > 1 becomes less important. For intermediate St we
expect a non-trivial interplay between the two above mechanisms that makes it very
difficult to build up a model able to reproduce even the qualitative behaviour.

Another interesting aspect shown in figure 1(a) is the residual dependence of the
normalized particle acceleration on Reynolds number. For the case of fluid tracers it
is known that intermittent corrections to the dimensional estimate arms = a0(ε

3/ν)1/4

may explain the Reynolds number dependence (Sawford et al. 2003; Hill 2002;
Biferale et al. 2004). Data suggest that the fluid intermittency may be responsible of
such deviations at St > 0 as well. This view is supported by the fact that the curves
for the three Reynolds numbers are almost parallel.

A two-parameter formula for the variance of the acceleration as a function
of Stokes number can be derived in the limit of vanishing Stokes numbers:
a2

rms(St) = a2
rms(0) + C exp[−(D/St)δ] (G. Falkovich 2005, personal communication).

This expression follows from the acceleration probability distribution function (p.d.f.)
of tracer particles under the assumptions that (i) the main effect of inertia is to reduce
the particle concentration in regions where the acceleration is larger than ν1/2/τs

3/2;
(ii) the p.d.f. tail is well reproduced by a stretched exponential shape with exponent
β = 2/3δ. Although the formula fits the data well, the limitation of our data-set to
only a few points with St � 1 does not permit a significant benchmark of the model.

In table 2 we summarize the values that we have measured for 〈a2〉 and 〈a4〉 as
a function of all Stokes numbers and for all Reynolds numbers available. Besides
the effect of inertia on typical particle acceleration it is also interesting to investigate
the effects on the form of the p.d.f. a(t). As shown in figure 2(a), the p.d.f.s become
less and less intermittent as St increases. In the inset of the same figure we show the
flatness, 〈a4〉/〈a2〉2, as a function of St . The abrupt decreasing for St > 0 is even
more evident here (notice that the y scale is logarithmic).

In the limits of small and large St the qualitative trend of the p.d.f.s can be captured
by the same arguments used for arms. In figure 2(b) we compare the p.d.f. shape for
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(a) St 0 0.16 0.27 0.37 0.48 0.59 0.69 0.80 0.91 1.01 1.12 1.34 1.60 2.03 2.67 3.31
〈ã2〉 3.09 2.07 1.80 1.63 1.50 1.39 1.31 1.24 1.17 1.12 1.06 0.97 0.88 0.75 0.61 0.51
〈ã4〉 288 48.1 30.5 22.4 17.7 14.5 12.3 10.6 9.20 8.11 7.21 5.77 4.47 3.11 1.94 1.29

(b) St 0 0.16 0.27 0.38 0.49 0.60 0.71 0.82 0.93 1.04 1.15 1.37 1.64 2.08 2.74 3.40
〈ã2〉 2.63 1.89 1.65 1.45 1.38 1.29 1.21 1.14 1.08 1.03 0.98 0.89 0.80 0.68 0.54 0.45
〈ã4〉 133 32.9 21.6 16.3 13.1 10.9 9.29 8.03 7.01 6.18 5.48 4.37 3.36 2.23 1.39 0.90

(c) St 0 0.16 0.26 0.37 0.47 0.58 0.68 0.79 0.89 1.00 1.10 1.31 1.57 1.99 2.62 3.25
〈ã2〉 2.02 1.59 1.40 1.28 1.19 1.11 1.05 0.99 0.94 0.89 0.85 0.77 0.70 0.59 0.47 0.39
〈ã4〉 52.8 19.1 13.1 10.1 8.24 6.95 6.01 5.24 4.61 4.11 3.67 2.95 2.32 1.59 0.97 0.63

Table 2. Normalized values of the second and fourth moments of the acceleration 〈ã2〉 =
〈a2〉/[3(ε3/ν)1/2] , 〈ã4〉 = 〈a4〉/[3(ε3/ν)] for (a) Rλ = 185, (b) Rλ = 105 and (c) Rλ = 65. The
statistical error on all entries are of the order of 5%.
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Figure 2. (a) Acceleration p.d.f.’s for a subset of St values (St = 0, 0.16, 0.37, 0.58, 1.01,
2.03, 3.31 from top to bottom) at Rλ = 185. The inset displays the acceleration flatness,
〈a4〉/〈a2〉2, at increasing Rλ from bottom to top. (b) The two outer curves correspond to the
acceleration p.d.f. for St = 0.16 (�) and the p.d.f. of the fluid tracers acceleration measured
at the same position of the inertial particles, Du/Dt (dashed line). The two inner curves are
the acceleration p.d.f. at the highest Stokes, St = 3.31 (�) and the p.d.f. of the filtered fluid
acceleration (solid line). All curves are normalized to have unit variance.
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the smallest Stokes number with the one obtained by using the tracer acceleration
measured on the particle position, Du/Dt . The two functions overlap perfectly,
confirming that the only difference between fluid particles and inertia particles for
small St is due to preferential concentration. In the same figure we also compare, for
the highest Stokes number, St = 3.31, the p.d.f. of the particle acceleration with the
one obtained from the filtered fluid trajectories. Now the agreement is less perfect but
still fairly good, providing reassurance that this limit can be captured starting from
a low-pass filter of fluid tracer velocities. Note that the p.d.f. of tracer acceleration
measured on the particle position, Du/Dt , approaches the unconditioned p.d.f. as St

increases (not shown). This further confirms that preferential concentration plays a
minor role in the acceleration at these large Stokes numbers.

4. Statistics of acceleration conditioned on the flow topology
We now focus on particle acceleration statistics conditioned on the topological

properties of the carrier flow at the particle positions. In particular, we look at the
sign of the discriminant (see e.g. Chong, Perry & Cantwell 1990 and Bec 2005):

∆ =

(
det[σ̂ ]

2

)2

−
(

Tr[σ̂ 2]

6

)3

, (4.1)

where σ̂ij = ∂iuj is the strain matrix evaluated at the particle position X . Note that, in
deriving (4.1), we omitted the term proportional to Tr[σ̂ ] because of incompressibility.
For ∆ � 0 the strain matrix has three real eigenvalues (strain-dominated regions); for
∆ > 0 it has a real eigenvalue and two complex conjugate ones (rotational regions).
For a similar study, using a different different characterization of the flow structures,
see (Squires & Eaton 1991). Note that in two dimensions the equivalent of ∆ is
the well-known Okubo–Weiss parameter that differentiates elliptic from hyperbolic
regions of the flow.

In figure 3(a–c) we show the acceleration p.d.f., P (a|∆), conditioned on the
sign of ∆ at particle positions, for three different characteristic Stokes number
St =0.16, 0.48, 1.34. In figure 3(d) we show the root-mean-squared acceleration,√

〈a2|∆〉/3, as a function of St . A few results are worth noting. The fraction of
particles in the two regions (N (∆ � 0)) varies considerably as a function of the
Stokes number (see inset of figure 3d), with a depletion of particles in the regions
with some degree of rotation, which becomes less effective at large St . This is similar
to what is observed in the inset of figure 1(a), where the non-homogeneous particle
distribution is characterized in terms of the correlation dimension (Bec et al. 2005).
Further, although the shape of the p.d.f. for a given Stokes number does not change
much as a function of the sign of ∆, a noticeable change in the squared acceleration
is observed. As shown in figure 3(d), the acceleration is higher in the strain-dominated
regions than in the ones with some degree of rotation. Note that the effect of inertia is
dramatic: for the smallest St the conditional acceleration is larger when ∆ < 0 while
the opposite behaviour is observed for tracer (St = 0). This may be the signature of
the expulsion of particles out of intense vortex filaments (which is more effective for
St � 1) leading to an undersampling of the acceleration in the regions dominated by
rotational motion. The same difference is also measured for higher moments of the
conditioned acceleration (not shown).

These results show that the strong correlation between flow structure and particle
preferential concentration is more effective at low Stokes numbers. At larger St the
particle fraction N (∆ � 0) approaches the tracer value (the response time is too large
to maintain the correlation between particle trajectories and the local flow topology)
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Figure 3. (a–c) Acceleration statistics conditioned on the sign of the discriminant ∆ defined
in (4.1). (a) P.d.f.s of acceleration for (a) St = 0.16, (b) 0.48, (c) 1.34, conditioned on strain
regions (solid line, ∆ � 0) and on rotating regions (symbols, ∆ > 0) regions, respectively.
(d) Normalized root mean square conditional acceleration on ∆ � 0 (open squares) and ∆ > 0
(filled squares) regions as a function of St . The inset displays the fraction of particles in the
rotating regions N (∆ > 0) (N (∆ � 0) = 1 − N (∆ > 0)) as a function of St . The conditional
acceleration was computed on the data recorded at frequency 10τη (see table 1). For St = 0

the acceleration
√

〈a2|∆〉/3 is estimated using the pressure gradient −∇p.

and the depletion of acceleration should be ascribed to the effect of filtering, as
discussed in the previous section (cf. figures 1b and 2b).

5. Conclusions and perspectives
A systematic study of the acceleration statistics of heavy particles in turbulent

flows, on changing both Stokes and Reynolds numbers has been presented. The main
conclusions are (i) preferential concentration plays an almost singular role at small St.
Indeed, even a quite small inertia may suffice to expel particles from those turbulent
regions (vortex cores) where the most intermittent and strong acceleration fluctuations
would be experienced; (ii) for small St, a good quantitative agreement between the
inertial particle acceleration and the conditioned fluid tracer acceleration is obtained;
(iii) at large St, the main effect is filtering of the velocity induced by the response
Stokes times. For St > 1, the statistical properties of fluid tracers averaged over a
time window of the order of τs are in quite good agreement with the inertial particle
properties.

Some important questions remain open. It is not clear how to build up a
phenomenological model that is able to describe the inertial particle acceleration as a
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function of both Stokes and Reynolds numbers. For example, a naive generalization
of the multifractal description, successfully used for fluid tracers (Biferale et al. 2004),
may be insufficient. It is not straightforward to include in such models the correlation
between preferential concentration and the local topological properties of the carrier
flow. Here such correlations have been studied in terms of the real or complex nature
of the eigenvalues of the strain matrix at particle positions. We found that, more
effectively at small rather than large St values, particles preferentially concentrate in
strain-dominated regions and that this preferential concentration has a clear role in
determining the acceleration fluctuations. However, this information does not directly
lead to a model for the acceleration statistics.

The strong fluctuations of both Kolmogorov time and Kolmogorov dissipative scale
are the most interesting aspects which distinguish the statistics of heavy particles in
turbulence from those measured in smooth flows. It would thus be important to also
study the statistical properties conditioned on the local Stokes number (defined in
terms of a ‘local’ energy dissipation, see e.g. Collins & Keswani 2004).

Work in this direction will be reported elsewhere.
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